Fast Computation by Subdivision of Multidimensional Splines and Their Applications
نویسندگان
چکیده
We present theory and algorithms for fast explicit computations of uniand multi-dimensional periodic splines of arbitrary order at triadic rational points and of splines of even order at diadic rational points. The algorithms use the forward and the inverse Fast Fourier transform (FFT). The implementation is as fast as FFT computation. The algorithms are based on binary and ternary subdivision of splines. Interpolating and smoothing splines are used for a sample rate convertor such as resolution upsampling of discrete-time signals and digital images and restoration of decimated images that were contaminated by noise. The performance of the rate conversion based spline is compared with the performance of the rate conversion by prolate spheroidal wave functions.
منابع مشابه
Ternary interpolatory Subdivision Schemes Originated from splines
A generic technique for construction of ternary interpolatory subdivision schemes, which is based on polynomial and discrete splines, is presented. These schemes have rational symbols. The symbols are explicitly presented in the paper. This is accompanied by a detailed description of the design of the refinement masks and by algorithms that verify the convergence of these schemes. In addition, ...
متن کاملComputation of interpolatory splines via triadic subdivision
We present an algorithm for computation of interpolatory splines of arbitrary order at triadic rational points. The algorithm is based on triadic subdivision of splines. Explicit expressions for the subdivision symbols are established. These are rational functions. The computations are implemented by recursive filtering.
متن کاملBootstrapping bispectra: an application to testing for departure from Gaussianity of stationary signals
such an approach is local. We can choose the interpolation points nonuniformly by assigning more interpolation points around irregular locations. The disadvantage of ISS is that the generated curves are not polynomial splines. V. CONCLUSION In this correspondence, we propose the ISS approach for the initialization of a wavelet transform, which is very important for further applications. Moreove...
متن کاملOn Discrete Simplex Splines and Subdivision
A variety of techniques to facilitate fast graphical display of curves and surfaces for interactive CAGD purposes have been developed, in the past years. Many of these are commonly referred to as subdivision algorithms PI. In this paper we propose a method for subdividing simplex splines, i.e., splines that can be defined over non-regular grid partitions. There is a relatively exhaustive theory...
متن کاملSubdivision surfaces for CAD - an overview
Subdivision surfaces refer to a class of modelling schemes that define an object through recursive subdivision starting from an initial control mesh. Similar to B-splines, the final surface is defined by the vertices of the initial control mesh. These surfaces were initially conceived as an extension of splines in modelling objects with a control mesh of arbitrary topology. They exhibit a numbe...
متن کامل